库拉索芦荟 - 芦荟汇聚地!

棱台

棱台的特征

1、正棱台的侧棱相等,侧面是全等的等腰梯形。各等腰梯形的高相等,它叫做正棱台的斜高;2、正棱台的两底面以及平行于底面的截面是相似正多边形;3、正棱台的两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面相应的半径也组成一个直角梯形。4、棱台各棱的反向延长线交于一点。5、棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。6、下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。7、侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。8、侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。9、顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。棱台的表示:用表示底面的各顶点的字母表示。 如:棱台ABCD-A’B’C’D’。底面是三角形,四边形,五边形----的棱台分别叫三棱台,四棱台,五棱台。扩展资料棱台的体积取决于两底面之间的距离(棱台的高),以及原来棱锥的体积。设h为棱台的高, , 为棱台的上下底面积,V为棱台的体积。由于棱台是由一个平面截去棱锥的一部分(也就是和原来棱锥相似的一个小棱锥)得到,所以计算体积的时候,可以先算出原来棱锥的体积,再减去和它相似的小棱锥的体积。棱锥被平行于底面的平面所截时,截面的面积与底面面积的比,等于小棱锥和原棱锥的高的比的平方。假设原棱锥的高是H,那幺小棱锥的高是H-h。也就是说:所以:棱台的体积等于原棱锥体积减去小棱锥的体积:参考资料来源:百度百科-棱台

棱柱和棱台的区别到底是什么?

棱柱棱锥棱台的底都是四边形,棱锥是由一个底和有一个共顶点的三个三角形组成,棱台是由棱锥截去锥上部而成。棱柱是几何学中的一种常见的三维多面体,指上下底面平行且全等,侧棱平行且相等的封闭几何体。若棱柱的底面为n边形,那么该棱柱便称为n-棱柱。如三棱柱就是底面为三角形的棱柱。棱柱是多面体中最简单的一种,我们常见的一些物体,例如三棱镜、方砖以及螺栓的头部,它们都呈棱柱的形状 。棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。过棱柱不相邻的两条侧棱的截面都是平行四边形。直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。