库拉索芦荟 - 芦荟汇聚地!

验证性因子分析

验证性因子分析的方法

背景:自制了一份问卷,如何验证问卷结构的有效性?该用什么方法?学生时代用万能的spss进行探索性因子分析?工作后又见识到了同事使用聚类分析的方法?有幸学习过几次结构方程模型,印象中通过结构方程模型进行验证性因子分析,方法简单又有效,但因为学艺不精,没法完整的述说出这个方法的好与不足,于是又看了遍侯杰泰的《结构方程模型及其应用》。将这段时间脑内的困惑作一个自我答疑,也期待通过这次整理,能对结构方程模型有一个深刻的印象,下次不至于再面对“我懂,但说不出”的尴尬窘境。

1.什么时候用探索性因子分析,什么时候用验证性因子分析?

当你有一个预设模型时(即你有一个假设:问卷中哪些题目属于哪个维度),可以直接用验证性因子分析,验证预设模型是否成立。当你没有预设模型时(即你不清楚问卷中哪些题目属于哪个维度)

2.探索性因子分析和验证性因子分析方法上的区别?

在做探索性因子分析的时候,第一个因子会捕获最大的变异量,从属它的题目通常也比较多。

有时候验证性因子分析能区分多个因子,即一个多因子模型拟合不错,但探索性因子分析只产生1个或2个主要因子而已。

3.结构方程模型具有哪些能力?

4.如何通过结构方程模型进行验证性因子分析?

在查看结果时,一般关注以下几个拟合指数:

•Χ2:minimum fit function Chi-square,主要用于比较多个模型,值越小,拟合越好

•df:degree of freedom,主要用于比较多个模型,自由度越大,模型越简单

•RMSEA:在0.08以下(越小越好)

•NNFI:在0.9以上(越大越好)

•CFI:在0.9以上(越大越好)

指标和因子关系的调整:

(1)Q4在因子A中的完全标准化负荷很小(LX=0.05),但它在其他因子中的修正指数也不高,显然这一题不从属A因子,但也不归属其他因子;

(2)Q8在因子B的负荷不高(0.28),但在因子A中的MI是41.4,显然它可能归属于因子A;

调整后,需要重新进行验证性因子分析,查看指标变化。

需要注意的是:如果仅仅看修正指数或因子负荷,但缺乏其他实质理论依据(如题目含义)的支持,随便将题目增删转移,并不合适。


验证性因子分析

验证性因子分析(confirmatory factor analysis, CFA)是用于测量因子与测量项(量表题项)之间的对应关系是否与研究者预测保持一致的一种研究方法。




验证性因子分析CFA 的主要目的在于进行 效度验证 ,同时还可以进行 共同方法偏差CMV 的分析。




结合实际应用情况,验证性因子分析通常有三个用途:

聚合效度,又称收敛效度,强调那些应属于同一因子(指标)下的测量项,测量时确实落在同一因子下面。

如果目的在于进行聚合(收敛)效度分析,则可使用 AVE 和 CR 这两个指标进行分析,如果每个因子的AVE值大于0.5,并且CR值大于0.7,则说明具有良好的聚合效度,同时一般还要求每个测量项对应的因子载荷系数(factor loading)值大于0.7。有时候还可能会结合模型拟合指标,以及进行模型MI值修正,以达到更好的结论。

由上表可知,AVE值全部均大于0.5,而且CR值全部均大于0.7,因而说明本次测量量表数据具有优秀的聚合效度。

区分效度,强调本不应该在同一因子(指标)下的测量项,测量时确实不在同一因子下面。

如果目的在于进行区分效度分析,则可使用AVE根号值和相关分析结果进行对比,如果每个因子的AVE根号值均大于“该因子与其它因子的相关系数最大值”,此时则具有良好的区分效度,为更好表述,使用下图展示:

上图的斜对角线为AVE的根号值,,比如因子对应的AVE根号值为0.843,该值大于因子1与另外3个因子的相关系数(分别是0.700,0.646和0.777),类似因子2,因子3,因子4也这样进行分析。最终发现因子的AVE根号值,全部均大于该因子与其它因子的相关系数值,因而说明具有很好的区分效度。

操作步骤:

分析时首先完成验证性因子分析的模型构建, 通过' 生成变量 '功能将题项合并为一个整体(因子)进行 相关分析 。

共同方法偏差,是指由于测量外部的某些因素导致数据出现集中的偏差。换句话说,测量的差异是由于研究本身(或其他),如测量工具、问题构成或测量环境等导致的。

如果目的在于进行共同方法偏差(CMV)分析,常见的做法为: 将所有的测量项(即所有因子对应的测量量表题项)放在一个因子里面,然后进行分析。

如果测量出来显示模型的拟合指标,比如卡方自由度比,RMSEA,RMR,CFI等无法达标,则说明模型拟合不佳,即说明所有的测量项并不应该同属于一个因子(放在一起时模型不好),因而说明数据通过共同方法偏差CMV检验,数据无共同方法偏差问题。

上图显示卡方自由度值为11.137,明显高于标准(>3),并且GFI,CFI,NFI,NNFI这四个指标值全部均低于0.7,明显偏差标准值(大于0.9),RMSEA和RMR值均大于0.15,也严重偏差标准值。因而说明模型拟合质量非常糟糕,也即说明不能本次研究量表数据无法聚焦成一个因子,说明无共同方法偏差问题。




针对CMV检验,上种思路同样也适用于使用探索性因子分析EFA方法进行检验CMV问题(也称作Harman单因子检验方法),即查看把所有量表项进行探索性因子分析EFA时,如果只得出一个因子或者第一个因子的解释力(方差解释率)特别大,通常以50%为界,此时可判定存在同源方差(共同方法偏差),反之则说明没有共同方法偏差问题。

针对共同方法偏差(CMV)分析,还有其它的一些做法,建议用户以文献为准。




(1)进行聚合(收敛)效度,或区分效度分析,建议首先进行探索性因子分析(EFA),然后再进行CFA分析。

原因在于CFA对于数据质量要求高,如果探索性因子分析就发现因子与测量项对应关系出现偏差,需要首先进行处理,确认好因子与测量项对应关系后,再进行CFA分析。

(2)如果使用CFA进行分析,建议样本量至少为测量项(量表题)的5倍以上,最好10倍以上,且一般情况下至少需要200个样本。

(3)一个因子对应的测量项最好在5~8个之间,便于后续删除掉不合理测量项。




登录 SPSSAU官网 体验在线数据分析 ​​​​

 


验证性因子分析

验证性因子分析:对量表进行效度验证的一种方法。需要注意验证性因子分析适用于经典量表,探索性因子分析适用于非经典量表 (1)聚合效度(收敛效度):依据AVE(平均提取方差值>0,5)和CR(组合信度>0.7)判断其是否达标 (2)区分效度:就是说你找的这个四个维度,是否可以很好的区分开呢? (1)将同一维度的概念放入量表-选择开始分析 (2)CFA分析基本汇总 (1)样本量>200 (2)经典量表 (3)如一个维度(因子A),至少对应2个或2个以上的内容(A1/A2/A3/A4/A5) (4)调整方法:结合MI指标 链接1 :数据分析实战教学之验证性因子分析-SPSSAU实现 https://www.bilibili.com/video/av69372013 链接2 :验证性因子分析(CFA)-SPSSAU帮助手册 https://spssau.com/helps/questionnaire/cfa.html