库拉索芦荟 - 芦荟汇聚地!

微分中值定理

什么是微分中值定理

微分中值定理是一系列中值定理总称,是研究函数的有力工具,其中最重要的内容是拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。一、罗尔定理内容:如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(a<ξ<b),使得 f'(ξ)=0.几何上,罗尔定理的条件表示,曲线弧 (方程为 )是一条连续的曲线弧 ,除端点外处处有不垂直于x轴的切线,且两端点的纵坐标相等。二、拉格朗日定理内容:如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(a<ξ<b),使得 f'(ξ)=0。几何上,罗尔定理的条件表示,曲线弧 (方程为 )是一条连续的曲线弧 ,除端点外处处有不垂直于x轴的切线,且两端点的纵坐标相等。三、达布定理内容:若函数f(x)在[a,b]上可导,则f′(x)在[a,b]上可取f′(a)和f′(b)之间任何值。推广:若f(x),g(x)均在[a,b]上可导,并且在[a,b]上,g′(x)≠0,则f′(x)/g′(x)可以取f′(a)/g′(a)与f′(b)/g′(b)之间任何值。

什么是微分中值定理?

微分中值定理是一系列中值定理总称,是研究函数的有力工具,其中最重要的内容是拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。微分中值定理反映了导数的局部性与函数的整体性之间的关系,应用十分广泛。拉格朗日定理内容:如果函数 f(x) 满足:1、在闭区间[a,b]上连续;2、在开区间(a,b)内可导。那么:在(a,b)内至少有一点ξ(a<ξ<b),使等式 f(b)-f(a)=f′(ξ)(b-a) 成立。拉格朗日中值定理的几何意义是:曲线上必然存在至少一点,过该点的切线的斜率和连接曲线(a,b)的割线的斜率相同;或者说,曲线上必然存在至少一点可以做割线(a,b)的平行线。扩展资料:微分中值定理及由它导出的一些重要定理还有其他应用。如讨论函数在给定区间内零点的个数,证明函数恒等式或不等式以及证明函数或导函数在某区间存在满足某种特征的点等等。通过学习定理的基本内容和典型题型的解题方法和技巧,力图学会一些论证的方法,如变量替换法和辅助函数法。这是实现由未知向已知转化中常用的方法。辅助函数的构造技巧性较强,要求学习怎样从题目所给条件进行分析推导,逐步导出所需的辅助函数或从所要证明的结论中倒出所要构造的辅助函数。还要充分重视直观与分析相结合的方法。常常是直观的几何图形会帮助我们去思考问题。拉格朗日中值定理是柯西中值定理的特殊情形,罗尔定理又是拉格朗日中值定理的特殊情形,而它们的证明却是从特殊到一般。参考资料来源:百度百科-微分中值定理

写出三个微分中值定理的内容

1、罗尔中值定理:若f(x)满足:(1)在[a,b]上连续;(2)在(a,b)上可导;(3)f(a)=f(b).则至少存在c∈(a,b),使f(c)'=0

2、拉格朗日中值定理:若f(x)满足:(1)在[a,b]上连续;(2)在(a,b)内可导。则至少存在c∈(a,b),使f(b)-f(a)=f'(c)(b-a)或f(a+h)-f(a)=f'(a+θh),其中h=b-a,0<θ<1

3、柯西中值定理:若f(x)与g(x)满足:(1)在[a,b]上连续;(2)在(a,b)内可导;(3)g'(x)≠0.则至少存在c∈(a,b),使[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)


微分中值定理?

如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(aN时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。编辑本段中值定理费马定理内容:设函数f(x)在ξ处取得极值且f(x)在点ξ处可导则f'(ξ)=0.推论:若函数f(x)在区间I上的最大值(最小值)在I内的点c处达到且f(x)在点c处可导则f'(c)=0.拉格朗日定理内容:如果函数 f(x) 满足:1)在闭区间[a,b]上连续;2)在开区间(a,b)内可导。那么:在(a,b)内至少有一点ξ(a<ξ<b),使等式 f(b)-f(a)=f′(ξ)(b-a) 成立。柯西定理内容:如果函数f(x)及F(x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)对任一x∈(a,b),F'(x)≠0那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立[中值定理]分为: 微分中值定理和积分中值定理:以上四个为微分中值定理定积分第一中值定理为:f(x)在a到b上的定积分等于f(ξ)(b-a)(存在a<ξ<b使得该式成立)以下为导数的应用: