奇函数有哪些?
9大常见奇函数如图:奇函数的性质1、两个奇函数相加所得的和或相减所得的差为奇函数。2、一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。3、 两个奇函数相乘所得的积或相除所得的商为偶函数。4、一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。偶函数的性质1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足 f(x)=f(-x) 如y=x*x。2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。
什么是奇函数
奇函数的定义:对于函数f(x)的定义域内任意一个x,满足f(-x)= - f(x),那么该函数f(x)就叫做奇函数。而对于函数f(x)的定义域内任意一个x,满足f(-x)= f(x),那么该函数f(x)就叫做偶函数。
对于函数f(x)定义域内的任意一个x,满足f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称)那么该函数f(x)称为既奇又偶函数。
对于函数f(x)定义域内存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)称为非奇非偶函数。
奇函数的性质:
1、两个奇函数相加所得的和或相减所得的差为奇函数。
2、两个奇函数相乘所得的积或相除所得的商为偶函数。
3、一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。
4、一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。
什么是奇函数
1、奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 2、偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
3、特别地:如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
4、如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
5、函数奇偶性的证明方法一般有:⑴定义法:函数定义域是否关于原点对称,对应法则是否相同。⑵图像法:f(x)为奇函数f(x)的图像关于原点对称点(x,y)→(-x,-y)f(x)为偶函数f(x)的图像关于Y轴对称点(x,y)→(-x,y)⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性。