库拉索芦荟 - 芦荟汇聚地!

换底公式

对数公式换底公式

换底公式是一个比较重要的公式,在很多对数的计算中都要使用,公式就是log(a)(b)=log(c)(b)/log(c)(a)(a,c均大于零且不等于1)。
在数学对数运算中,通常是不同底的对数运算,这时就需要换底。.
通常在处理数学运算中,将一般底数转换为以e为底(即In)的自然对数或者是转换为以10为底(即lg)的常用对数,方便于我们运算;有时也通过用换底公式来证明或求解相关问题;
在计算器上计算对数时需要用到这个公式。


对数换底公式是什么?

对数换底公式推导方法如下:若有对数log(a)(b)设a=n^x,b=n^y。则log(a)(b)=log(n^x)(n^y)。换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。换底公式应用:在工程技术中,换底公式也是经常用到的公式,例如,在编程语言中,有些编程语言(例如C语言)没有以a为底b为真数的对数函数,只有以常用对数(即以10为底的对数)或自然对数(即e为底的对数)。此时就要用到换底公式来换成以e或者10为底的对数,表示出以a为底b为真数的对数表达式,从而处理某些实际问题。