二阶微分方程的求解
二阶微分方程的通解公式有以下:第一种:由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是:y=C1cos2x+C2sin2x-xsin2x。第二种:通解是一个解集……包含了所有符合这个方程的解;n阶微分方程就带有n个常数,与是否线性无关。通解只有一个,但是表达形式可能不同,y=C1y1(x)+C2y2(x)是通解的话y=C1y1(x)+C2y2(x)+y1也是通解,但y=C1y1就是特解。第三种:先求对应的齐次方程2y''+y'-y=0通解。
二阶微分方程
二阶微分方程如下:对于一元函数来说,如果在该方程中出现因变量的二阶导数,通常就称为二阶(常)微分方程,其一般形式为F(x,y,y',y'')=0。在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。二阶线性微分方程形如 y’’+ P(x) y’+Q(x) y = f(x),是二阶微分方程 y’’=F(x,y,y’)的特殊形式。当f(x) = 0时,称为齐次的,否则称为非齐次的。二阶线性微分方程的力学背景是加速度,利用牛顿第二定律可以列出二阶线性微分方程。常系数非齐次线性微分方程特解的待定系数法:1、f(x) = e^ax^Pm(x)型。2、f(x) = e^ax^[Pl(x) coswx + Qn(x) sinwx]型。要点1、和一阶微分方程对应,掌握齐次方程和非齐次方程的解的结构关系。2、牢记二级结论,对定理推导的结果如特征根法求解公式。否则做题时重新推导速度太慢。3、学习和练习的要点就是典型模型识别和套公式的转化化归。因为很多解是采用构造法得出的,能套上合适的模型就是一种能力。不要看不起套公式的方法。4、二阶齐次方程的通解C1y1(x)+C2y2(x)。当y1(x)和y2(x)是线性无关的,y= C1 y1(x) + C2 y2(x) 就是齐次微分方程的通解。注意,两个函数只要不是倍数关系,就是线性无关的。5、二阶非齐次方程的通解 Y + y*。可以看出,二阶线性微分方程的求解问题转化为两个问题:一是齐次方程的通解求法;二是非齐次方程的特解求法。其中,对常系数微分方程有通解公式,对一般的非齐次方程有常数变易求解方法。
二阶微分方程求解
方法:1.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 特征方程r2+pr+q=0的两根为r1,r2 微分方程y”+py’+qy=0的通解 两个不相等的实根r1,r2 y=C1er1x+C2er2x 两个相等的实根r1=r2 y=(C1+C2x)er1x一对共轭复根r1=α+iβ,r2=α-iβ y=eαx(C1cosβx+C2sinβx)2.1.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ① f(x)=Pm(x)eλx型 令y*=xkQm(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Qm(x)的m+1个系数 2.2.②f(x)=eλx[Pl(x)cosωx+Pn(x)sinωx]型 令y*=xkeλx[Qm(x)cosωx+Rm(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Qm(x)和Rm(x)的m+1个系数例题:1. y"=f(x)型方程 (方程的右端不显含 y,yy'=fv"dx=ff(x)dx+C,y=fydx=fff(x)dx+Cx+C,即y= f(x)dxkx+Cx+C例1解方程 y"=xe*.解 y'= xe dx=e x-e +C,y= (xe -e*+C)=xe -e*-e +Cx+C.2.y”=f(x,y')型方程 (方程右端不显含 y)令y'=p(x),y”=12,代入原方程,得dpdx=f(x,p),关于p的一阶微分方程,设其通解为 p=9(x,C1), 又p=dydx=(x,C),可分离变量的一阶微分 方程,积分得通解 y= (x,C)dx+C,